Direct e-beam lithography of PDMS

Conference or Workshop Item

How to cite:


For guidance on citations see FAQs.

© 2011 The Authors

Version: Version of Record

Link(s) to article on publisher’s website:
https://www.academia.edu/9823134/Direct_e-beam_lithography_of_PDMS

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Direct E-beam Lithography of PDMS

J. Bowen, D. Cheneler, A. P. G. Robinson

* School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
School of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK

Introduction

Poly(dimethylsiloxane) (PDMS) is a versatile material frequently used in the fabrication of micro and nano scale devices. It has a unique combination of properties including excellent thermal and chemical stability and non-toxicity making it an attractive material for use in many fields of science, especially in biomedical research [1]. Its sensitivity to electron radiation [2] has led to its use as a resist for subsequent substrate patterning [3] albeit generally in a modified form [4]-[6]. Here we analyze the effects of exposing liquid PDMS to electron radiation over a large range of doses on the resulting elastic modulus and topography. The data shows that PDMS processed using e-beam lithographic techniques is a viable structural material capable of being utilized in the next generation of microfluidic and other micro devices.

Fabrication by E-Beam Lithography

PDMS with a zero shear viscosity of 1 Pa.s was decanted onto a clean Si wafers (IOB Technologies, UK) 2 mm native SiO₂ layer) and spun at a frequency of 33.3 Hz for 100 minutes, using a spin processor (WSI, Newport, WA). The resultant PDMS film thickness were in the range 1.5 μm ± 50 nm and measured using an interference spectrometer (HR 800, Human Optics, Germany) operating over the wavelength range 250 - 800 nm. Exposure was carried out using an FEI XL30 FEG field emission scanning electron microscope (SEM) equipped with a pattern generator for lithography (Raith Elphy Plus). Arrays of 25 squares of 50 x 50 μm was exposed on the sample at a beam energy of 30 keV and beam current 1.02 nA, using the Raith pattern generator. After exposure the sample was dipped in isopropyl alcohol for 10 seconds to remove the unexposed areas of the PDMS from the substrate. Visualisation of topography (see Figs. 1 and 2) was performed using a Micro-MAMM interferometer (Omniscan, UK).

Experimental Analysis of Topography and Elastic Modulus

Acquisition of topographical and mechanical data were performed simultaneously using a Nanowizard II AFM (PJK, UK) operating in force scan mapping mode, at a temperature of 18 °C and a relative humidity in the range 25-35 %. This involved the use of a scanner with a maximum lateral range of 100 x 100 μm and a maximum vertical range of 50 μm in conjunction with a C-cell resonator module (PJK, UK). Data acquisition was performed using rectangular 130 μm length Si cantilevers (type NSC36/03 Al Mikro Masch, Estonia) having pyramidal tips with 10 nm nominal radius of curvature. Cantilever spring constants were on the order 0.2 N/m and were calibrated according to the method reported by Bowen et al. [7]. Data were acquired at 400 surface locations within the 100 x 100 μm scan area by driving the fixed end of the cantilever at a velocity of 20 pm/s towards the sample surface, whilst monitoring the deflection of the free end of the cantilever using a laser beam. Upon making contact with a surface feature, the height of the contact point was recorded, which was converted into a map of surface topography. A Hertzian model was fitted to data from four separate positions to assess the mechanical response of each exposed region. A maximum compressive load of 5 nN was applied to the surface during data acquisition, which corresponded to a small indentation strain.

The data in Fig. 3 shows how the Young’s modulus generally increases with increasing dose. At doses below ca. 150 μC/cm² the PDMS appears to be still mostly liquid-like with the apparent increase in elastic modulus corresponding to a change in the viscous properties of the material. The noise at very low doses suggests that there is local agglomeration of partially cross-linked polymer chains through which the indentation is affected by the proximity of the substrate. The discontinuity at ca. 150 μC/cm² implies a critical cross-linking density at which solidification occurs. Topography data measured with the AFM, as exemplified in Fig. 4, was used to measure the thickness of the PDMS remaining after development. Fig. 5 shows that at doses above the critical value of ca. 150 μC/cm², the resultant thickness plateaus to a value close to that of the liquid film. The noise at doses above ca. 3000 μC/cm² in Fig. 5 is due to swelling effects due to excessive backscattering corresponding to the increase in thickness as seen in Figs. 1 and 2. This suggests that between the limits of 150 μC/cm² and 3000 μC/cm², the PDMS is solid with consistent thickness and resolution and that the Young’s modulus is adjustable by three orders of magnitude from 1 MPa to 1 GPa.

Raman Spectroscopy

Large areas of approximately 1 x 1.3 mm were irradiated with electron doses of between 10 and 45,000 μC/cm² at a beam energy of 30 keV and beam currents of between 21 and 780 nA. The XL30 final apertures was opened to increase beam current allowing faster exposures of the extremely large areas required for Raman measurements. The unexposed material was not removed prior to spectroscopy. Raman spectra of specimens were obtained using a Witec Alpha 3000R (LOT Optical, UK) operating a 0.3 W single frequency 785 nm diode laser (Topica Photonics, Germany) and an Acton SP2300 triple grating monochromator/spectrograph (Princeton Instruments, USA) over the wavelength range 200 - 3500 cm⁻¹. Mean spectra were composed of 100 accumulations, acquiring individual spectra using an integration time of 0.2 s.

The chemical composition of PDMS is shown in Fig. 6. During irradiation, methyl groups are removed allowing the backbone of the chains to become cross-linked. However, at large doses, the electrons also cause chain scission and cause other chemical species to form. This is what is observed in Figs. 3 and 5 where we see liquid like PDMS below ca. 150 μC/cm², solidified PDMS between 150 and 3000 μC/cm² and swelling effects above 3000 μC/cm². These local formations and scissions corresponding to changes in phase may be perceptible in the Raman data. The results of the Raman analysis on samples with doses ranging from unexposed to 27517.7 μC/cm² is shown in Fig. 7. There are small peaks forming at higher doses in the highlighted areas in Fig. 7 and while they are weak, they are perceptible, suggesting possible new bonds. This will form the basis of future analysis.

Acknowledgements

Lithography was carried out in the Microlithography Facility supported by Birmingham Science City Creating and Characterising the Next Generation of Advanced Materials (West Midlands Centre for Advanced Materials Project 3). The Atomic Force Microscope and Confinical Raman Microscope used in this research were obtained, through Birmingham Science City Innovative Uses for Advanced Materials in the Modern World (West Midlands Centre for Advanced Materials Project 2), with support from Advantage West Midlands (AWM) and part funded by the European Regional Development Fund (ERDF).

References